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1 Introduction

Angle chasing is one of the simplest-defined but most powerful and most used techniques in geometry. By
finding congruent angles and parallel and perpendicular lines, we are able to unlock the world of cyclic
quadrilaterals, similar triangles, and many more. Before we begin this handout, proceed knowing that angle
chasing can vary from extremely simple to extremely hard - meaning if you get stuck on a problem from this
handout, do not be intimidated, and instead continue trying various methods of angle chasing. For those of
you who have read AoPS Volume 1, the first few sections of this handout should look familiar to you.

1.1 Parallel Lines
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In the figure, we have l ∥ m. When we have two parallel lines, such as l and m with a line passing through
both of them, such as n, several properties arise.

1. We have the angle equalities e = g, f = h, b = d, and a = d. These equalities state that opposing angles
in an intersection are equal, and are relatively intuitive.

2. We also have that a = e, b = f , c = g, and d = h, or the ”corresponding angle” theorems, which state
that corresponding angles between the two intersections are equal.

3. Relatively inuitive, because we have many lines, notice that we will also have that a + d = e + h =
a+ b = e+ f = 180 by supplementary angles. From this, we can also prove and derive the opposing
angle theorems.

1.2 Exercises

Exercise 1.1.1 In triangle ABC, draw a line through A parallel to BC. Using properties of parallel lines,
prove the sum of the angles in a triangle is always 180 degrees.

Exercise 1.1.2 In triangle ABC, prove that the exterior angle of A is the sum of the measures of an-
gles B and C. Using this, prove that the sum of the exterior angles is always 360 degrees.
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1.3 Similar and Congruent Triangles

In geometry, angle chasing is often used to find similar triangles, which can simplify your computations
greatly by giving way to nice ratios or other nice angles. There are generally three ways to prove similarity in
two different triangles.

Given triangles △ABC, and △DEF , we can prove similarity iff

1. Angle-Angle (AA) Similarity - If triangles △ABC and △DEF are such that ∠A = ∠D and ∠B = ∠E,
then we have that △ABC ≃ △DEF , where ≃ denotes similarity.

2. Side-Angle-Side (SAS) Similarity - If triangles △ABC and △DEF are such that ∠A = ∠D and
AB
AC = DE

DF , then we have that △ABC ≃ △DEF .

3. Side-Side-Side (SSS) Similarity - If we have triangles △ABC and △DEF such that AB
DE = AC

DF = BC
EF

then we have that △ABC ≃ △DEF .

Note that when we write out if two triangles are similar, the order in which we write the vertices matters -
corresponding angles/vertices must be written in the same position in notation.

One common configuration of similar triangles that you may have seen below is where in triangle △ABC,
points D and E are on sides AB and AC, respectively, so that BC ∥ DE.

A

B C

D E

Note here that from our parallel line properties, we have that ∠ADE = ∠ABC and ∠AED = ∠ACB,
so △ADE ≃ △ABC. From here, we can find that AD

AB = AE
AC = DE

BC , which will be useful in many later
problems.

1.4 Examples

1.4.1 (May 2015 MATHCOUNTS Mini)

In rectangle ABCD, AB = 6 units, and the measure of ∠DBC is 30 degrees. M is the midpoint of segment
AD, and segments BD and CM intersect at K. What is the length of segment MK?
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Solution.
Notice that since BC and MD are parallel, we have that ∠BDM = ∠DBC, and by vertical angles, we have
that ∠MKD = ∠BKC, so by AA-similarity, we have that △MKD ∼ △CKB.

From here, notice that since M is the midpoint of AD, we have that MD
BC = MK

CK = 1
2 by similarity,

giving us that MK is 1
3 of MC, or

√
7. (You can find this using the Pythagorean Theorem)

1.5 Exercises

Exercise 1.3.1 If D and E are on sides AB and AC, respectively, of △ABC such that D is the midpoint of
AB and E is the midpoint of AC, if DE = 6, find BC.

Exercise 1.3.2 If the altitude of a right triangle from the right angle divides the hypotenuse into lengths 4
and 8, find the lengths of the legs of the triangle.

CHALLENGE Exercise 1.3.3 Using similar triangles, prove the Angle Bisector Theorem, which states
that in a triangle ABC, if AX is the angle bisector of ∠BAC such that X is on BC, we have that BX

CX = AB
AC .

1.6 Hints

1.3.2. Notice that one of the smaller right triangles the altitude splits the bigger right triangle into is similar
to the bigger one. What other similar triangles can you find?

1.3.3. If you extend AX to E so that ∠BEX = ∠BAX, what similar triangles can you find?

2 Circles

In geometry, you will often encounter circles. In circles, we find that there are many convenient angles that
we can ”catch” using basic angle identities.

2.1 Basic Circle Identities

2.1.1 Inscribed Angle Theorem

The inscribed angle theorem states that in a circle with points A, B, and C on the circle, the measure of

∠ABC is one half the measure of arc ÃC not containing B.

B

A

C

In mathematical terms, we can express this as

∠ABC =
1

2
(ÃC).
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In particular, one should observe that this also implies that angles that intercept the same arc have the same
measure.

2.1.2 Exterior Secant Intersection

This theorem states that the measure of an angle formed by two secants of a circle that intersect outside of
the circle is equivalent to one half the absolute difference between the measures of the two arcs of the circle
the secants intercept.

B

A

C

α
β

In mathematical terms, we can express this as

∠ABC =
β − α

2
.

2.1.3 Intersection of a Tangent and a Chord

The measure of the angle formed by a tangent and a chord of the circle through the tangency point is one
half of the measure of the arc that the chord cuts off opposite to the angle.

A B

C
θ

In mathematical terms, this is

∠ABC =
θ

2
.

2.1.4 Interior Chord Intersections

The measure of an angle formed by two chords that intersect inside the circle is one half of the sum of the
two arcs intercepted by the chords.
In mathematical terms, this is equivalent to

θ =
α+ β

2
.
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θ
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α

2.2 Exercises

Exercise 2.1.1 (Thales’ Theorem) Prove that given a circle with diameter AB, for any point C on the circle,
we have that ∠ACB = 90 degrees.

Exercise 2.1.2 (Cyclic Quadrilaterals) For any cyclic quadrilateral ABCD (a quadrilateral that can
be inscribed in a circle), prove that

• Opposing angles sum to 180 degrees.

• ∠ADB = ∠ACB.

Exercise 2.1.3 (1971 AHSME) Points A, B, Q, D, and C lie on the circle as shown and the measures of

arcs B̃Q and Q̃D are 42 and 38 degrees, respectively. What is the sum of angles P and Q?

2.3 Sidenote

We will not go over the proofs of the identities today, however, if you are curious, they can be found in
Chapter 10 of Art of Problem Solving’s Volume 1. If you do not own a copy, the proofs can be found at
https://drive.google.com/file/d/13PqkhdUkd1rxnTvF2twi7MAguRipouBE/view?usp=sharing.

3 Some More Advanced Example Problems

3.0.1 Canada 1986

Problem.
A chord ST of constant length slides around a semicircle with diameter AB. M is the midpoint of ST and P
is the foot of the perpendicular from S to AB. Prove that ∠SPM is constant for all positions of ST .

Solution.
Let O be the center of the circle. Notice that M , O, P , and S are concyclic, since ∠SMO + ∠SPO =
90 + 90 = 180. Therefore, we have that ∠SPM = ∠SOM . Since ∠SOM is constant, so is ∠SPM , and we
are done.

3.0.2 The Orthic Triangle

Problem.
For an acute triangle ABC with orthocenter H, let HA be the foot of the altitude from A to BC, and define
HB and HC similarly. Show that H is the incenter of △HAHBHC .

Solution.
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Notice that HCHHAB is cyclic, since ∠BHCH + ∠BHAH = 90 + 90, or 180 degrees, so we have that
∠HCHAH = ∠HCBH. Similarly, we have that HAHHBC is cyclic, since ∠CHAH +∠CHBH = 90+ 90, or
180 degrees, so we have that ∠HBHAH = ∠HBCH.

However, both ∠HBCH and ∠HCBH are both equal to 90 − ∠BAC, so HAH is the angle bisector of
∠HCHAHB .

Proving something similar for the other three angles, we find that H is the incenter of HAHBHC , and
we are done.

4 Exercises

Note - some of these may not be easy, so do not be discouraged. However, you do know all that you need to
know to solve the problems.

4.1 (AoPS Volume 1)

In triangle ADC, a point M is on AC such that ∠ADM = ∠ACD. Prove that (AD)2 = (AM)(AC).

4.2 (EGMO 1.7)

Let O and H denote the circumcenter and orthocenter of △ABC, respectively. Prove that ∠BAH = ∠CAO.

4.3 (David Altizio)

Triangle AEF is inscribed inside of square ABCD with E on BC and F on CD. If AE = 4, EF = 3, and
AF = 5, find the area of square ABCD.

4.4 (AHSME 19??)

In triangle ABC, D is in segment BC so that AC = CD and ∠CAB −∠ABC = 30. What is the measure of
∠BAD?

4.5 (AMC 2011/10B)

Rectangle ABCD has AB = 6 and BC = 3. Point M is chosen on side AB so that ∠AMD = ∠CMD. Find
the measure of ∠AMD.

4.6 (David Altizio’s 100 Geometry Problems)

A, B, and C are in a plane such that ∠ABC = 90. If D is an arbitrary point on AB, and E is the foot of
the perpendicular from D to AC, prove that ∠DBE = ∠DCE.

4.7 AIME 2007/II

Square ABCD has side length 13, and points E and F are exterior to the square such that BE = DF = 5
and AE = CF = 12. Find EF 2.
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