Angle Chasing

Catherine Xu

May 28th, 2023

1 Introduction

Angle chasing is one of the simplest-defined but most powerful and most used techniques in geometry. By finding congruent angles and parallel and perpendicular lines, we are able to unlock the world of cyclic quadrilaterals, similar triangles, and many more. Before we begin this handout, proceed knowing that angle chasing can vary from extremely simple to extremely hard - meaning if you get stuck on a problem from this handout, do not be intimidated, and instead continue trying various methods of angle chasing. For those of you who have read AoPS Volume 1, the first few sections of this handout should look familiar to you.

1.1 Parallel Lines

In the figure, we have $l \| m$. When we have two parallel lines, such as l and m with a line passing through both of them, such as n, several properties arise.

1. We have the angle equalities $e=g, f=h, b=d$, and $a=d$. These equalities state that opposing angles in an intersection are equal, and are relatively intuitive.
2. We also have that $a=e, b=f, c=g$, and $d=h$, or the "corresponding angle" theorems, which state that corresponding angles between the two intersections are equal.
3. Relatively inuitive, because we have many lines, notice that we will also have that $a+d=e+h=$ $a+b=e+f=180$ by supplementary angles. From this, we can also prove and derive the opposing angle theorems.

1.2 Exercises

Exercise 1.1.1 In triangle $A B C$, draw a line through A parallel to $B C$. Using properties of parallel lines, prove the sum of the angles in a triangle is always 180 degrees.

Exercise 1.1.2 In triangle $A B C$, prove that the exterior angle of A is the sum of the measures of angles B and C. Using this, prove that the sum of the exterior angles is always 360 degrees.

1.3 Similar and Congruent Triangles

In geometry, angle chasing is often used to find similar triangles, which can simplify your computations greatly by giving way to nice ratios or other nice angles. There are generally three ways to prove similarity in two different triangles.

Given triangles $\triangle A B C$, and $\triangle D E F$, we can prove similarity iff

1. Angle-Angle (AA) Similarity - If triangles $\triangle A B C$ and $\triangle D E F$ are such that $\angle A=\angle D$ and $\angle B=\angle E$, then we have that $\triangle A B C \simeq \triangle D E F$, where \simeq denotes similarity.
2. Side-Angle-Side (SAS) Similarity - If triangles $\triangle A B C$ and $\triangle D E F$ are such that $\angle A=\angle D$ and $\frac{A B}{A C}=\frac{D E}{D F}$, then we have that $\triangle A B C \simeq \triangle D E F$.
3. Side-Side-Side (SSS) Similarity - If we have triangles $\triangle A B C$ and $\triangle D E F$ such that $\frac{A B}{D E}=\frac{A C}{D F}=\frac{B C}{E F}$ then we have that $\triangle A B C \simeq \triangle D E F$.

Note that when we write out if two triangles are similar, the order in which we write the vertices matters corresponding angles/vertices must be written in the same position in notation.

One common configuration of similar triangles that you may have seen below is where in triangle $\triangle A B C$, points D and E are on sides $A B$ and $A C$, respectively, so that $B C \| D E$.

Note here that from our parallel line properties, we have that $\angle A D E=\angle A B C$ and $\angle A E D=\angle A C B$, so $\triangle A D E \simeq \triangle A B C$. From here, we can find that $\frac{A D}{A B}=\frac{A E}{A C}=\frac{D E}{B C}$, which will be useful in many later problems.

1.4 Examples

1.4.1 (May 2015 MATHCOUNTS Mini)

In rectangle $A B C D, A B=6$ units, and the measure of $\angle D B C$ is 30 degrees. M is the midpoint of segment $\overline{A D}$, and segments $\overline{B D}$ and $\overline{C M}$ intersect at K. What is the length of segment $\overline{M K}$?

Solution.

Notice that since $B C$ and $M D$ are parallel, we have that $\angle B D M=\angle D B C$, and by vertical angles, we have that $\angle M K D=\angle B K C$, so by AA-similarity, we have that $\triangle M K D \sim \triangle C K B$.

From here, notice that since M is the midpoint of $A D$, we have that $\frac{M D}{B C}=\frac{M K}{C K}=\frac{1}{2}$ by similarity, giving us that $M K$ is $\frac{1}{3}$ of $M C$, or $\sqrt{7}$. (You can find this using the Pythagorean Theorem)

1.5 Exercises

Exercise 1.3.1 If D and E are on sides $A B$ and $A C$, respectively, of $\triangle A B C$ such that D is the midpoint of $A B$ and E is the midpoint of $A C$, if $D E=6$, find $B C$.

Exercise 1.3.2 If the altitude of a right triangle from the right angle divides the hypotenuse into lengths 4 and 8 , find the lengths of the legs of the triangle.

CHALLENGE Exercise 1.3.3 Using similar triangles, prove the Angle Bisector Theorem, which states that in a triangle $A B C$, if $A X$ is the angle bisector of $\angle B A C$ such that X is on $B C$, we have that $\frac{B X}{C X}=\frac{A B}{A C}$.

1.6 Hints

1.3.2. Notice that one of the smaller right triangles the altitude splits the bigger right triangle into is similar to the bigger one. What other similar triangles can you find?
1.3.3. If you extend $A X$ to E so that $\angle B E X=\angle B A X$, what similar triangles can you find?

2 Circles

In geometry, you will often encounter circles. In circles, we find that there are many convenient angles that we can "catch" using basic angle identities.

2.1 Basic Circle Identities

2.1.1 Inscribed Angle Theorem

The inscribed angle theorem states that in a circle with points A, B, and C on the circle, the measure of $\angle A B C$ is one half the measure of arc $\widehat{A C}$ not containing B.

In mathematical terms, we can express this as

$$
\angle A B C=\frac{1}{2}(\overparen{A C})
$$

In particular, one should observe that this also implies that angles that intercept the same arc have the same measure.

2.1.2 Exterior Secant Intersection

This theorem states that the measure of an angle formed by two secants of a circle that intersect outside of the circle is equivalent to one half the absolute difference between the measures of the two arcs of the circle the secants intercept.

In mathematical terms, we can express this as

$$
\angle A B C=\frac{\beta-\alpha}{2} .
$$

2.1.3 Intersection of a Tangent and a Chord

The measure of the angle formed by a tangent and a chord of the circle through the tangency point is one half of the measure of the arc that the chord cuts off opposite to the angle.

In mathematical terms, this is

$$
\angle A B C=\frac{\theta}{2}
$$

2.1.4 Interior Chord Intersections

The measure of an angle formed by two chords that intersect inside the circle is one half of the sum of the two arcs intercepted by the chords.
In mathematical terms, this is equivalent to

$$
\theta=\frac{\alpha+\beta}{2}
$$

2.2 Exercises

Exercise 2.1.1 (Thales' Theorem) Prove that given a circle with diameter $A B$, for any point C on the circle, we have that $\angle A C B=90$ degrees.

Exercise 2.1.2 (Cyclic Quadrilaterals) For any cyclic quadrilateral $A B C D$ (a quadrilateral that can be inscribed in a circle), prove that

- Opposing angles sum to 180 degrees.
- $\angle A D B=\angle A C B$.

Exercise 2.1.3 (1971 AHSME) Points A, B, Q, D, and C lie on the circle as shown and the measures of arcs $\overparen{B Q}$ and $\overparen{Q D}$ are 42 and 38 degrees, respectively. What is the sum of angles P and Q ?

2.3 Sidenote

We will not go over the proofs of the identities today, however, if you are curious, they can be found in Chapter 10 of Art of Problem Solving's Volume 1. If you do not own a copy, the proofs can be found at https://drive.google.com/file/d/13PqkhdUkd1rxnTvF2twi7MAguRipouBE/view?usp=sharing.

3 Some More Advanced Example Problems

3.0.1 Canada 1986

Problem.

A chord $S T$ of constant length slides around a semicircle with diameter $A B . M$ is the midpoint of $S T$ and P is the foot of the perpendicular from S to $A B$. Prove that $\angle S P M$ is constant for all positions of $S T$.

Solution.
Let O be the center of the circle. Notice that M, O, P, and S are concyclic, since $\angle S M O+\angle S P O=$ $90+90=180$. Therefore, we have that $\angle S P M=\angle S O M$. Since $\angle S O M$ is constant, so is $\angle S P M$, and we are done.

3.0.2 The Orthic Triangle

Problem.

For an acute triangle $A B C$ with orthocenter H, let H_{A} be the foot of the altitude from A to $B C$, and define H_{B} and H_{C} similarly. Show that H is the incenter of $\triangle H_{A} H_{B} H_{C}$.

Solution.

Notice that $H_{C} H H_{A} B$ is cyclic, since $\angle B H_{C} H+\angle B H_{A} H=90+90$, or 180 degrees, so we have that $\angle H_{C} H_{A} H=\angle H_{C} B H$. Similarly, we have that $H_{A} H H_{B} C$ is cyclic, since $\angle C H_{A} H+\angle C H_{B} H=90+90$, or 180 degrees, so we have that $\angle H_{B} H_{A} H=\angle H_{B} C H$.

However, both $\angle H_{B} C H$ and $\angle H_{C} B H$ are both equal to $90-\angle B A C$, so $H_{A} H$ is the angle bisector of $\angle H_{C} H_{A} H_{B}$.

Proving something similar for the other three angles, we find that H is the incenter of $H_{A} H_{B} H_{C}$, and we are done.

4 Exercises

Note - some of these may not be easy, so do not be discouraged. However, you do know all that you need to know to solve the problems.

4.1 (AoPS Volume 1)

In triangle $A D C$, a point M is on $A C$ such that $\angle A D M=\angle A C D$. Prove that $(A D)^{2}=(A M)(A C)$.

4.2 (EGMO 1.7)

Let O and H denote the circumcenter and orthocenter of $\triangle A B C$, respectively. Prove that $\angle B A H=\angle C A O$.

4.3 (David Altizio)

Triangle $A E F$ is inscribed inside of square $A B C D$ with E on $B C$ and F on $C D$. If $A E=4, E F=3$, and $A F=5$, find the area of square $A B C D$.

4.4 (AHSME 19??)

In triangle $A B C, D$ is in segment $B C$ so that $A C=C D$ and $\angle C A B-\angle A B C=30$. What is the measure of $\angle B A D$?

4.5 (AMC 2011/10B)

Rectangle $A B C D$ has $A B=6$ and $B C=3$. Point M is chosen on side $A B$ so that $\angle A M D=\angle C M D$. Find the measure of $\angle A M D$.

4.6 (David Altizio's 100 Geometry Problems)

A, B, and C are in a plane such that $\angle A B C=90$. If D is an arbitrary point on $A B$, and E is the foot of the perpendicular from D to $A C$, prove that $\angle D B E=\angle D C E$.

4.7 AIME 2007/II

Square $A B C D$ has side length 13 , and points E and F are exterior to the square such that $B E=D F=5$ and $A E=C F=12$. Find $E F^{2}$.

