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Graphing Trigonometric Functions

In this section, we focus on the graphs of trigonometric functions. We will plot the
functions on the standard coordinate plane, except the values on the z-axis represent
angles in rgdians. For those who aren’t familiar with this, one radian is defined to be
equal to 180 degrees. This means that 7 radians is equal to 180° and 27 radians is equal

to 360°.
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Figure 1: The figure shows the right triafgles created by three points p; = (3,4),

(—4,-3), and p3 = (3,—4). The legs offthese right triangles with non-positive ltng,t 1
are colored in blue, and the others are shown in red. We see that sinf; = sinf, = %
and sin 6y = ——f
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Figure 2: The figure shows the plots of Y= Sinz (=) and y = COS T il

T the interval [— o, 2m). M{ L(M
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Figure 3: The figure shows the plot of y = tanx (in blue) on the interval [ L ‘—,’]
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Figure 4: The figure shows the plots of y = sin

y = tan

~! 2 (in green) on the interval [—1,1].
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L2 (in red), y = cos™! z (in blue)
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Figure 5: The figure shows the plots of y = cscz (in blue), y = secx (in red), and

y = cot z (in green) on the interval [—27,27]. ~ —
am—
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Our final topic for this subsection is plotting transformationsgf trigonometric functions.
We will only elaborate on graphing transformations of the sine function, as it ¢
easily be generalized to transformations of other trigonometric functions. We

consider the function ‘h -~ ﬁ

y = asin(bxr + ¢) + d.

Now, we introduce the following useful terms that help us describe th
soidal function.

e The agglitude of a sinusoidal function is the height of each peak from the z-axis.

e The period is the distance between peaks, or the length of the repeating portion
of the graph.

e The frequency of a sinusoidal curve represents how often the function repeats. By

this definition, we see that the frequency can be expressed as the reciprocal of the
period, and has units of cycles per unit of time (which represents the unit of the

/¢

r-axis).
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Figure 6: The figure shows the plots of y = sin(2x+2)+2 (in blue), y 2@(2:1:%—2) +2
(in red), y = 3sin(22+2) +2 (in green), and y :ésin(ZI +2)+2 (in light blue). More-
over, we started with the base function y = 2sin(2z+2) 42 and changed the parameter
a. By doing this, we see that increasing a increases the amplitude, which corresponds to
a vertical stretch. Likewise, decreasing a decreases the amplitude, vertically shrinking
the graph. Thus, we conclude that the a is the parameter representing/determining the
amplitude.
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Figure 7: The figure shows the plots of y = 2sin(z+2)+2 (in blue), y = 2sin(2x+2)+2
(inred), y =2 qing_?)_?*—i— 2)+2 (in green), and y = %in%r +2) 42 (in light blie). More-
over, we started with the base function y = 2 5111(2 x+2)+ 2 and changed the parameter
b. Bv doing thls we see that increasing eriod, which corresponds to
al : . Likewise, decreasing > iod. horizontally stretching
the graph. Thus, we conclude that the b is the parameter representing/determining the

71'

period, which is equal to =& (giving us an inverse relationship between the period and
b).
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y = asin(bx + ¢) + d.
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Figure 8: The figure shows the plots of y = 2sin(2z+1)+2 (in blue), y = 2 Sin(2;L'+é)+2
(in red), y = 2sin(2z 4+ §) + 2 (in green), and y = 2sin(2z + 4) + 2 (in light blue).
Moreover, we started with the base function y = 2sin(2z + 2) + 2 and changed the
parameter ¢. By doing this, we see that increasing ¢ shifts the graph more to the left.
leewwc decrcasmg ¢ shifts the graph to the right. Notice that these translations leave
the unchangcd Thus, we Concludc that the ¢ is the parameter
representing the phase »which is equal to ¢ leftwards (as a phase shift of zero
means that the function passes through the 01‘igim‘t if £ is negative, then we
have a rightward shift.
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y = asin(bzx + ¢) + d.
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Figure 9: The figure shows the plots of y = 2 sin(2z+2)-fla(in blue), y = 2sin(2z+2)+2
(in red), y = 2sin(2z + 2) + 3 _(in green), and y = 2sin(2z + 2) +4 (in light blue).
Moreover, we started with the base function y = 2sin(2z + 2) + 2 and changed the
parameter d. By doing this, we see that increasing d shifts the oraph upwards. Likewise,
ths the graph downwards. Thus, we conclude that the d is the parameter
representing the vertical shift.
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Simple Trigonometric Identities

o ) ) ;
sin“f + cos“ 6 =1

H RIS 11
AN )

\'\&6 4 (oﬂzg =(

1 + cot? = csc? 0@\'
tan?f + 1 = sec* § &~
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sin(—f) = — sin § & o"clok
co’\ﬁ = costl (— @uem
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sin(a + [3) = sin acos 3 + sin 3 cos a e ‘ - .
/ e =(d

cos(a+ ) = cosa cos 3 — sinasin 3
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tana + tan 3
1l —tanatan 3

tan(a + ) =

tana — tan 8
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sin(6 + g) +cosf, sin(@ +7)= —sinf, sin(f+x27)=-sinb

cos(# 5) = Fsinf, cos(f £ m) = —cosf, sin(cos=*27w) = cosl
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(20) = cos?f —sin®f = 1 — 2sin*f = 2cos?H — 1

sin(26) = 2sin 6 cos
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More Trigonometric Identities

Sumn s J’(m%lw"

,7 2sinasin 3 = cos(a — f3
" 12cosacos B = cos(

)
a — ) + cos
2sina cos 3 = sin(a + 3)

)

2sin fcosa = sin(a + 3
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Checkpoint 4.1. Show that

2 sin « sin )’-:L\ — f3) — cos(a + )’))
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sina + sin 8 = 2sin
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cosa + cos f = 2cos (

cosa — Ccos 3 = —2sin
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Checkpoint 4.2. Show that

, a+ a—p
cosa + cos B = 2cos —5 COS
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sin(30) = 3sinf — 4sin® 0
cos(36) = 4cos® 6 — 3cos b
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Given a+(8+v=m, tana+ tanf 4+ tany = tanatantan-~y
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Trigonometric Functions in Geometry

Theorem 5.1. (Law of Cosines) Let AABC' be a triangle with side lengths a, b, and c,
and let the measure of the angle opposite the side with length ¢ be denoted by C'. Then,
we have

Q’ ¢ = a? + b* — 2abcos C.
0 CQ = RS T - 2«.‘90‘% C)
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Theorem 5.2. Let AABC' be a triangle with side lengths BC = a, AC = b, AB = c,
and circumradius R. Then

b
a ¢ __9R
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Theorem 5.3. Let AABC' be a triangle with legs with length a, b, and c, and the angle
in between them measuring C. Then the area of AABC' is %ab sinC'.
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Problem Solving in Trigonometry

Example 6.1. At how many points do the graphs y = sinz and y = cos z intersect in
the interval [—4m,47]?
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Example 6.2. Show that

o+ 3 sin « + sin 3
tan = :
2 cos o + cos 3



Checkpoint 6.1. Show that

COST =

1 — tan?

1 + tan?
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Example 6.3. In triangle ABC, AB = 4, BC = 6, and AC = 8. Squares ABQR
and BC'ST are drawn external to and lie in the same plane as AABC. Compute Q7'
Source: ARML





