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1 Basics of Exponentiation
In this week, we will deal with expressions involving the form ab = a × a × · · · × a,
where there are b− 1 multiplication signs. We call a the base and b the exponent. We
will first discuss a set of results collectively known as the Law of Exponents.

Theorem 1.1. (Law of Exponents) The following properties govern arithmetic with
exponents.

1. a0 = 1 for all a 6= 0. The value of 00 is commonly chosen to be 1, but sometimes
it’s chosen to be undefined for certain applications.

2. 0b = 0 for all b 6= 0.

3. a−b = 1
ab

for all a 6= 0.

4. ab · ac = ab+c for all a 6= 0.

5.
(
ab
)c

= abc for all a 6= 0.

6. (a · b)c = ac · bc for all a 6= 0.

7. a
b
c =

c
√
ab for all a, b, c 6= 0, b is an integer, c is a positive integer, and if a is

negative and b is odd, then c must be odd as well.

8. If ax = ay and a 6= 1, then x = y.

You should have the above results memorized, as they show up frequently in competition
math and you need to use them for harder problems. Try the following checkpoint to
see if you can apply the laws of exponentiation.
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Checkpoint 1.1.

1. Solve 45 · 83 = 2x.

2. Evaluate 243
3
5 .

3. Find x and y if 125 · 83 = 2x ∗ 3y.

4. Evaluate 0.5−6 + 10−3.

5. Solve
√

4
√

8
√
2x = 128.

6. Find the sum of the solutions of 5x2 = 254x+3.

7. Find the solutions of x to 2x · 22x · 23x = (2x)2x)3x.

2 Logarithm Basics and Properties
In this section, we will introduce logarithms. We define them as follows.

Definition. Let a, b, c satisfy ac = b, a, b > 0, and a 6= 1. Then, we define loga b = c.
This can be read as "the logarithm of b with respect to the base a is equal to c".

From this, we can see that logarithms are essentially the inverse of exponentiation.
This will be further explored later in the chapter, where we consider the graphs of
exponential and logarithmic functions. Next, lets discuss the several properties of logs.

Theorem 2.1. (Law of Logarithms) The following properties govern arithmetic with
logs.

1. aloga b = b.

2. loga b+ loga c = loga(bc).

3. loga b− logac = loga
b
c
.

4. logc
(
ab
)
= b logc a.

5. logc
b
√
a = logc a

b
.

6. logb a = 1
loga b

.

7. logb a logc b = logc a.

8. (Change of Base Property) logb a = logc a
logc b

.

9. loga b logb c = loga c.

Proof.
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1. Let c = loga b. Then from the definition of logarithms, ac = b. Plugging c = loga b
back into this, we have the result.

2. First we start with the equation

aloga b · aloga c = aloga(bc).

This equation follows easily from Theorem 4.2.1. Now, Theorem 4.1.4, we can
simplify the left-hand side to get the equation

aloga b+loga c = aloga(bc).

Now, we can take the logarithm base a of both sides of the equation to get the
desired result.

3. This result follows from substituting 1
c
in for c in Theorem 4.2.2 and by noting

loga
1
c
= − loga c, which follows from Theorem 4.2.4 by setting b = −1.

4. We start of with the definition of exponentiation: ab = a × a × · · · × a, where
there are b− 1 multiplication signs. Now, we can take the log base c of both sides
to get

logc
(
ab
)
= logc(a× a× · · · × a)

= logc a+ logc a+ · · ·+ logca

= b logc a,

where we obtained the second equality using Theorem 4.2.2.

5. This result follows from substituting 1
b
in for b in Theorem 4.2.4 and then applying

Theorem 4.1.7 with b = 1.

6. The result follows by setting c = a in Theorem 4.2.8.

7. Let x = logb a. Then bx = a, so b = a
1
x

logc b = logc

(
a

1
x

)
=

1

x
logc a.

Thus,

logb a logc b = x · 1
x
logc a

= logc a,

as desired.

8. The result follows by dividing both sides of Theorem 4.2.7 by logc b.
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Be careful when working with logs, as the following equations are commonly mistaken
and are NOT true in general.

logc(a+ b) 6= logc a+ logc b

logc(ab) 6= logc b · logc a

Try to solve the following problems with the logarithmic rules you just learned.

Checkpoint 2.1.

1. Evaluate log4 8 + log 84.

2. Without a calculator, estimate log1.1 96 to the nearest whole number, given that
log1.1 2 = 7.273 and log1.1 3 = 11.527.

3. How many real numbers x are there such that log2 x = x?

Checkpoint 2.2. Show the following:

• alogb c = clogb a

• logbc a
c = logb a

• loga b logc d = logc b loga d.

It’s worth mentioning that in many scenarios, the base of a logarithm is not specified.
In this case, it is assumed that the base is 10, a standard base that’s chosen to align
with our numeric system. Also, when you input log on a calculator, the function is the
logarithm function with a base of 10. If you want to calculate a log with a different
base on a calculator, then you can use the change of base formula to get everything in
logs with base-10. For example, if you wanted to calculate log2 5, you would plug in
log 5
log 2

on your calculator.

Furthermore, the notation ln(x) is shorthand notation for loge x, where e ≈ 2.71828
is a mathematical constant. Why this constant is important is due to calculus: the
exponential function ex is equal to its own derivative. A final note is that a log that has
no defined base, for example log(6), means that the log has a base of 10 in competition
math. However, in more advanced math, a log without a base usually means a natural
logarithm.

3 Exponential and Logarithmic Functions
In this section, we will consider the exponential and logarithmic functions ax and loga x
for some constant a > 0. We will analyze each of these graphs and discuss their rela-
tionship and transformations.

First, let’s analyze the function f(x) = ax. We do this by analyzing three different
scenarios on our value a.
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• (a > 1) In this scenario, we see that it is a strictly increasing function, with
the function going off to infinity as x → +∞. Also, notice that the y-intercept
is 1 (i.e. a0 = 1). Furthermore, as x → −∞, the function goes to zero (as
f(x) = ax = 1

a|x|
→ 1
∞ = 0). Thus, y = 0 is a horizontal asymptote. Furthermore,

the higher the value of a, the faster the function grows, to the right, from the
point (0, 1).

• If a = 1, then the function is simply the horizontal line y = 1. Boring!

• If 0 < a < 1, the function is strictly decreasing. To see this, note that y = ax is
the reflection of y =

(
1
a

)x across the y-axis. This is because(
1

a

)x
=
(
a−1
)x

= a−x.

From this, we can also see that the intersection of y = ax and y =
(
1
a

)x occurs
precisely at the point (0, 1).
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Figure 1: The figure shows the plots of y = 2x (in solid red), y =
(
1
2

)x (in dashed red),
y = 3x (in solid blue), and y =

(
1
3

)x (in dashed blue) on the interval [−3, 3]. This plot
illustrates the observations made above on the exponential function.

Next, let’s analyze the function f(x) = loga x for different values of a.

• When a > 1, the function y = loga x is an increasing function that has an asymp-
tote at x = 0 (approaches −∞ as x → 0+), and increases off to infinity as
x→ +∞. Additionally, notice that the x-intercept is (1, 0).

• When a = 1, y = loga x is undefined for all x 6= 1, so this value of a isn’t useful
at all!

• When a < 1, the function is in fact strictly decreasing and also has an x-intercept
(1, 0). It’s easy to see that this function is just the reflection of log 1

a
x across the

x-axis by the change-of-base identity:

log 1
a
x =

loga x

log a 1
a

= − loga x.
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Figure 2: The figure shows the plots of y = log2 x (in solid red), y = log 1
2
x (in dashed

red), y = log3 x (in solid blue), and y = log 1
3
x (in dashed blue) on the interval [−3, 3].

This plot illustrates the observations made above on the log function.

From our above discussion and graphs of various exponential and logarithmic functions
above, it should’ve become clear that the exponential function is in fact the inverse of
the logarithmic function. This can be easily verified algebraically, but also can be seen
graphically by noting that reflecting the exponential function across y = x gives the
corresponding logarithmic function.
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Figure 3: The figure shows the plots of y = 2x (in solid red) and y = log2 x (in solid
blue) on the interval [−4, 4]. This plot illustrates the observations made above that the
logarithmic function and the exponential function are inverses of each other.

4 Problem Solving Strategies with Logs and Expo-
nents

In this section, we will introduce a few problems to help illustrate some basic problem
solving strategies regarding logarithms that are commonly used in competition math.
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The identities in Theorem 4.2 are the primary tool used to solve equations involving
logarithms. However, there are many other techniques that are useful to solving these
problems. These include raising both sides of the equation to a certain power, elimi-
nating some logarithms, and converting a problem to solving an exponential equation;
this turns out to make the problem straightforward in many cases. Many of the exer-
cises in this chapter will help you hone your problem-solving skills using logarithms and
exponents, as it takes practice to know which technique/identity should be applied in
different scenarios. Here are a few examples that will help you get into such problem
solving techniques.

Example 4.1. Suppose that

log10 xy
3 = 1

log10 x
2y = 1

What is log10 xy? Source: AMC

Solution. Let’s try to remove the logs from the equation using exponentiation, as logs
are more complicated to deal with than exponents. This can be done by rewriting these
equations into exponent form, giving us

10 = xy3 (1)
10 = x2y (2)

Now, how do we find xy from these equations? In order to find xy, we will need to
multiply the equations in a way such that the exponent of x equals the exponent of y.
This can be done by multiplying the square of (4.2) and (4.1) to get x5y5 = 103. We
can now convert this back to log form which results in log10 x

5y5 = 3. Furthermore,
using logarithm identities, we have

log10 x
5y5 = log10(xy)

5

= 5 log10 xy.

Therefore, log10 xy = 3
5
. 4

In this problem, we showed you how to convert a log equation to an exponential equa-
tion. This is very important when it comes to problem solving because logs are harder
to work with then exponents.

Another important strategy to use when dealing with log expressions or equations
is substitution. In this strategy, we can substitute commonly occurring log expressions
with variables to make the problem easier. This technique is shown in the following
example.
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Example 4.2. Find log10
x
y
if the following equations are true with x > y:

log10 x+ log10 y = 10

log10 x · log10 y = 16

Solution. Solving this problem seems messy at first, especially considering what the
problem asks us to find! Let’s try to simplify the problem by removing the logs. We
can do this by substituting a = log10 x and b = log10 y. We can then rewrite the two
equations as a + b = 10 and ab = 16. Now, lets take a look at what the problem asks
for. It asks for log10

x
y
, which we can rewritten as log10 x − log10 = a − b using the

subtraction identity for logs. With this information, we now just need to find a − b.
We can square both sides of the equation a+ b = 10 to get a2 + 2ab+ b2 = 100. Since
ab = 16, we can subtract 4ab = 64 from both sides to get a2 − 2ab + b2 = 36. Now we
can conveniently factor the left-hand side to get (a − b)2 = 36. Since x > y, we have
that a > b, so we take the positive solution of a− b. Hence, a− b = log10

x
y
= 6. 4

With the correct substitution of logs, this problem solving strategy can be extremely
useful in contests. As long as you know your identities, you can turn a complex log
problem into a simpler algebra problem.

Next, let’s take a look at a complex exponent equation that is similar to problems in
past math contests.

Example 4.3. Find the number of solutions x to the equation(
x2 − 11x+ 29

)2x2−9x−18
= 1.

Solution. In order to solve this, we first need to consider how to get the left hand side
to equal 1. Overall, there are three ways for this to happen. The first case is when the
base equals 1. If the base is 1, then the exponent can be any real number. In this case,
there are 2 solutions satisfying x2 − 11x + 29 = 1 (namely x = 4, 7). The second case
is when the exponent equals 0. There are 2 solutions to 2x2 − 9x − 18 = 0 (namely
x = −3

2
, 6. The last (and commonly forgotten!) case is when the base is −1 and the

exponent is an even integer. There are two solutions to x2 − 11x + 29 = −1: namely
x = 5, 6. We can plug in both numbers in the exponent to find that the exponent is
odd when x = 5 and even when x = 6. Therefore, we only have one solution to this
case: x = 6. After a quick check that our solutions to each of the cases don’t coincide
(a common pitfall!), we get that there are 5 solutions. 4

Another thing to be careful is when dealing with even exponents in equations. This
includes squaring an equation with a square root. As two number numbers raised to
an even power can equal the same number, this can produce multiple or extraneous
solutions. For example, x4 = 81 has 2 real solutions, −3 and 3.

Finally, we’ll take a look at solving a system of log equations. Like solving other
systems of nonlinear equations, we aim to substitute in variables to make the equations
nicer. This aids us in eliminating variables, which in turn gives us the solution to the
system.

8



Example 4.4.

Find both ordered triplets (x, y, z) that satisfy the system of equations

log10 (2000xy)− (log10 x)(log10 y) = 4

log10 (2yz)− (log10 y)(log10 z) = 1

log10 (zx)− (log10 z)(log10 x) = 0.

Source: AIME

Solution. Using the sum of logarithms identity, let’s rewrite the equations in the system
as follows:

3 + log10 2 + log10 x+ log10 y − (log10 x)(log10 y) = 4

log10 2 + log10 y + log10 z − (log10 y)(log10 z) = 1

log10 z + log10 x− (log10 z)(log10 x) = 0.

Now, let’s get rid of the logs by making the substitutions a = log10 x, b = log10 y, and
c = log10 z. Doing these substitutions and doing a bit of rearrangement and factoring
(Simon’s Favorite Factoring Trick!) we get

(a− 1)(b− 1) = log10 2

(b− 1)(c− 1) = log10 2

(c− 1)(a− 1) = 1.

Now, we multiply all three of the equations and take the square root to give us

(a− 1)(b− 1)(c− 1) = ± log10 2.

Dividing this by each equation in the previous system, we get c− 1=1, a− 1 = 1, and
b−1 = log10 2, or c−1 = −1, a−1 = −1, and b−1 = − log10 2. Thus our two solutions
are (a, b, c) = (2, log10 2 + 1, 2), (0, log10 2 + 1, 0). Writing each in terms of either x, y,
or z from our original definitions and using the simplifications 10(log10 2)+1 = 20 and
10(− log10 2)+1 = 5 (from the basic logarithm and exponent properties) we get the two
solutions (x, y, z) = (100, 20, 100), (1, 5, 1) . 4

We hope these examples have given you a good introduction into using problem strate-
gies to solve log problems. However, the only way to get a good grasp of them is to
solve many problems involving logs, which includes the exercises here. Try them out!

5 Exercises
1. ? What is the value of a for which 1

log2a
+ 1

log3a
+ 1

log4a
= 1? Source: AMC

2. ? For how many integral values of x can a triangle of positive area be formed
having side lengths log2 x, log4 x, 3? Source: AMC
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3. ? For what value of x does

log√2
√
x+ log2 x+ log4 x

2 + log8 x
3 + log16 x

4 = 40?

Source: AMC

4. ? The solution of the equation 7x+7 = 8x can be expressed in the form x = logb 7
7.

What is b? Source: AMC

5. ? Let x, y and z all exceed 1 and let w be a positive number such that logxw = 24,
logy w = 40 and logxyz w = 12. Find logz w. Source: AIME

6. ? For what value of x does 10x · 1002x = 10005? Source: AMC

7. ? What is the value of the expression

1

log2 100!
+

1

log3 100!
+

1

log4 100!
+ · · ·+ 1

log100 100!
,

where
100! = 100 · 99 · 98 · 97 · · · · · 2 · 1?

Source: AHSME

8. ?? Positive integers a and b satisfy the condition

log2(log2a(log2b(2
1000))) = 0.

Find the sum of all possible values of a+ b. Source: AIME

9. ?? The solutions to the system of equations

log225 x+ log64 y = 4

logx 225− logy 64 = 1

are (x1, y1) and (x2, y2). Find log30 (x1y1x2y2). Source: AIME

10. ?? Let N = 2(2
2) and x be a real number such that N(NN) = 2(2

x). Find x.
Source: HMMT

11. ?? What is the value of

log3 7 · log5 9 · log7 11 · log9 13 · · · log21 25 · log23 27?

Source: AMC

12. ?? The lengths of the sides of a triangle with positive area are log10 12, log10 75,
and log10 n, where n is a positive integer. Find the number of possible values for
n. Source: AIME
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13. ?? The graphs of y = log3 x, y = logx 3, y = log 1
3
x, and y = logx

1

3
are plotted on

the same set of axes. How many points in the plane with positive x-coordinates
lie on two or more of the graphs? Source: AMC

14. ?? The domain of the function f(x) = log 1
2
(log4(log 1

4
(log16(log 1

16
x)))) is an inter-

val of what length? Source: AMC

15. ? ? ? The sequence a1, a2, . . . is geometric with a1 = a and common ratio r, where
a and r are positive integers. Given that log8 a1 + log8 a2 + · · ·+ log8 a12 = 2006,
find the number of possible ordered pairs (a, r). Source: AIME

16. ? ? ? Compute the positive real number x satisfying

x(2x
6) = 3.

Source: HMMT

17. ? ? ? Let f(x) = (x2 + 3x + 2)cos(πx). Find the sum of all positive integers n for
which ∣∣∣∣∣

n∑
k=1

log10 f(k)

∣∣∣∣∣ = 1.

Source: AIME

18. ? ? ? In a Martian civilization, all logarithms whose bases are not specified as
assumed to be base b, for some fixed b ≥ 2. A Martian student writes down

3 log(
√
x log x) = 56

loglog x(x) = 54

and finds that this system of equations has a single real number solution x > 1.
Find b. Source: AIME

19. ? ? ? There are positive integers x and y that satisfy the system of equations

log10 x+ 2 log10(gcd(x, y)) = 60

log10 y + 2 log10(lcm(x, y)) = 570.

Let m be the number of (not necessarily distinct) prime factors in the prime
factorization of x, and let n be the number of (not necessarily distinct) prime
factors in the prime factorization of y. Find 3m+ 2n. Source: AIME

20. ? ? ? Real numbers x and y are chosen independently and uniformly at random
from the interval (0, 1). What is the probability that blog2 xc = blog2 yc? Source:
AMC
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