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3 Solutions to Modular Arithmetic Problems

3.1 Warm-up Problems

1. Note that all of the numbers in series are one greater than a power of 7. This
means that each element of the series is congruent to 1 (mod 7). We can find the
number of elements in the series by adding 6 to each element and dividing by 7.
This gives us the sequence 1, 2, 3, · · · , 101, which means there are 101 terms in
the sequence. Therefore, the sum is congruent to 101 · 1 ≡ 101 ≡ 3 (mod 7).

2. 1919 ≡ (−1)19 ≡ −1 ≡ 4 (mod 5)

3. We can multiply all three congruences together to get xyz ≡ 6 (mod 9).

3.2 Bases: Review Exercises

1. Manually: 1110102 is equivalent to 21+23+24+25 = 5810. We then convert 5810
to base 4. The greatest power of 4 less than 58 is 16, which divides 58 three times
with a remainder of 10:

3__

The next power of 4 is 4, which divides 10 twice with a remainder of 2, which
gives us

3224

Shortcut: We form the groups 11, 10, and 10. 112 in base 10 is 3 which is also 3
in base 4, and 102 in base 10 is 2 which is also 2 in base 4. This gives us 3224 .

3.3 Modular Inverses: Review Exercises

1. Note that 3 · 3 ≡ 1 (mod 8). So the modular inverse of 3 mod 8 is 3 .

2. 997 ≡ (−3) (mod 1000). We’ll first find the modular inverse of 3 mod 1000. This
means that for some number n, 3n ≡ 1 (mod 1000).

We can list out the first few numbers equivalent to 1 mod 1000: 1001, 2001, 3001,
and so on. Notice that 2001 = 3 · 667, so 3 · 667 ≡ 1 (mod 1000). Thus 667 is the
modular inverse of 3.

If 667 is the modular inverse of 3, then −667 is the modular inverse of −3 (why?
(−667) · (−3) = 667 · 3). So −667 ≡ 333 (mod 1000) is the modular inverse of
997 mod 1000.
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3.3.1 Euler’s Totient Function: Review Exercises

1. The prime factorization of 15 is 3·5. Using the formula, φ(15) = (31−30)(51−0) =
2 · 4 = 8 .

2. The prime factorization of 10n is 2n · 5n. Using the formula, φ(10n) = (2n −
2n−1)(5n − 5n−1) or 4 · 10n−1 after simplification.

3.4 Euler’s Theorem: Review Exercises

1. Proof. We know that if p is a prime, φ(p) = p − 1. Then Euler’s Theorem gives
us ap−1 ≡ 1 (mod p).

3.5 Problems

1. Assume Phil buys x packs of hot dogs. That means out of the 10x hot dogs he
buys, 4 will be left over when matched with packs of 8 buns. Using modular
arithmetic, this is equivalent to saying 10x ≡ 4 (mod 8) =⇒ 2x ≡ 4 (mod 8). x
can be 2, 6, 10, and so on. Out of all the possibilities, 6 is the second smallest.

2. Let the smallest multiple of 23 we are looking for be 23x, where x is an integer.
Then we have 23x ≡ 4 (mod 89). Multiplying both sides by 4, we get 92x ≡ 16
(mod 89). This is equivalent to 3x ≡ 16 (mod 89). Now we multiply both sides
by 30 to get 90x ≡ 480 (mod 89), or x ≡ 480 ≡ 35 (mod 89). Thus the smallest
multiple of 23 will be 23 · 35 = 805 .

3. Assume each bag initially contains x gold coins. After adding 53 coins, the total
amount is divisible by 8, so 7x+53 ≡ 0 (mod 8). This is equivalent to −x+5 ≡ 0
(mod 8), or x − 5 ≡ 0 (mod 8). Then x ≡ 5 (mod 8), so x could be 5, 13, 21,
29, and so on. x = 29 is the smallest value that gives a total number of coins
greater than 200.

4. ((((7)7)7)···)7 is equivalent to 77
1000 . The unit digits of powers of 7 repeat in cycles

of 4:

71 ≡ 7 (mod 10)

72 ≡ 9 (mod 10)

73 ≡ 3 (mod 10)

74 ≡ 1 (mod 10)

75 ≡ 7 (mod 10)

...

Thus it suffices to find the exponent, 71000 (mod 1000). We know 74 ≡ 1 (mod 10),
so 71000 ≡ (74)250 ≡ 1250 ≡ 1 (mod 1000), so the last digit of 771000 will be 7 .
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5. We consider all the elements of the set mod 7. This means we have 7 elements
congruent to 0 mod 7, 8 elements congruent to 1 mod 7, and 7 elements congruent
to 2 mod 7, 3 mod 7, 4 mod 7, 5 mod 7, and 6 mod 7. In order for any pair in
S to not be divisible by 7, for any two elements a and b, a+ b 6≡ 0 (mod 7) =⇒
a 6≡ −b (mod 7). This means that a number equivalent to x (mod 7) and a
number equivalent to −x (mod 7) cannot both be in S. Thus, to maximize the
number of elements in S, we can have 1 element congruent to 0 mod 7, 8 elements
congruent to 1 mod 7, and 14 elements congruent to 2 and 3 mod 7 for a total of
1 + 8 + 14 = 23 .

6. We wish to find the hundreds digit of 20112011. To do this, we take the expression
mod 1000. 20112011 ≡ 112011 (mod 1000).

Now, note that Euler’s Theorem gives us 11φ(1000) ≡ 1 (mod 1000) =⇒ 11400 ≡ 1
(mod 1000). Thus 112011 ≡ 115·400 · 1111 ≡ 1111 (mod 1000).

This expression is now small enough to evaluate manually, but we can also use
the Binomial Theorem to simplify the calculations.

1111 ≡ (1 + 10)11 ≡
(
11

0

)
· 1 +

(
11

1

)
· 10 +

(
11

2

)
· 100 ≡ 1 + 110 + 5500 ≡ 661

This is because any term in the expansion with a factor of 1000 can be canceled
out. This gives us the hundreds digit 6 . Note that we could have used the
Binomial Theorem from the beginning without using Euler’s Theorem.

7. We have that N2 −N = N(N − 1) ≡ 0 mod 10000

Thus, N(N−1) must be divisible by both 54 and 24. Note, however, that if either
N or N − 1 has both a 5 and a 2 in its factorization, the other must end in either
1 or 9, which is impossible for a number that is divisible by either 2 or 5. Thus,
one of them is divisible by 24 = 16, and the other is divisible by 54 = 625. Noting
that 625 ≡ 1 mod 16, we see that 625 would work for N , except the thousands
digit is 0. The other possibility is that N is a multiple of 16 and N − 1 is a
multiple of 625. In order for this to happen, N − 1 must be congruent to -1 (mod
16). Since 625 ≡ 1 mod 16, we know that 15 ∗ 625 = 9375 ≡ 15 ≡ −1 mod 16.
Thus, N − 1 = 9375, so N = 9376, and our answer is 937 . Credit: AoPS Wiki

For alternate solutions, including a brute-force method, see

https://artofproblemsolving.com/wiki/index.php/2014_AIME_I_Problems/
Problem_8.
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